

DEUTSCHE BÖRSE GROUP

Open Day 2019 T7[®] infrastructure and latency Andreas Lohr

26 September 2019

Contents

T7[®] Topology

Timestamps provided in T7 API (in real time) in dark blue (t_3n: taken by network card, other: application level)

 \bigotimes Cisco 3548X switches operating in cut-through mode.

Developments since last Open Day Timeline

Developments since last Open Day

All time highs in processed messages – stable latencies

Туре	Date	Value			
Daily Transactions (T7 [®])	15-Aug-2019				322 Million
Daily Transactions (Eurex)	15-Aug-2019				133 Million
Latency (t_3n to t_4 in µs)	Aug-2019	Average: Median: Minimum:	All 337 56 20	Opt HF 427 54 22	Fut HF 119 53 22
Market Data (EOBI) Latency (t_3n to t_9, μs)	29-Aug-2019	Average: Median: Minimum:	All 229 42 20	Options 595 43 20	Futures 117 41 20
Percentage of orderbook updates published first via public market data (EOBI)	29-Aug-2019	Futures Options	All 99.7 79.0	Agency >99.9 98.6	Trades 99.9 92.3
Max Matcher Input Rate per second (T7 [®])	29-Aug-2019				97 kHz
Max Matcher Input Rate per second (Eurex)	03-Sep-2019				50 kHz
Max Matcher Input Rate per second (Eurex partition)	12-Dec-2018			11	L kHz (p 6)
Max Matcher Input Rate per second (Xetra partition)	22-May-2019			12	2 kHz (p 59)
Max Matcher Input Rate per second (single product)	17-Jun-2015			9	kHz (FESX)

Share your thoughts! #ITOpenDay19 @DeutscheBoerse

Public first principle untouched

Developments since last Open Day T7[®] latency composition

The charts below show a comparison of latencies for Eurex futures sent via PS gateways.

Dark blue are recent figures, light blue are from August 2018.

Most noticeable is an increase in matcher processing times due to addition of pre trade risk functionality. This was more than compensated by a reduction of gateway response processing times.

Developments since last Open Day Launch of EOBI for Options in Feb 2019

- EOBI volume in options much higher than in futures (avg of 8.5 GB vs 0.4 GB)
- EOBI faster in than 90% of trades and traded orders

Hardware refreshes of LF gateways in April 2019

- Replaced LF gateways (and all other non-latency critical servers) by new HW
- Decrease of the roundtrip on LF gateways by ~20 μ s

Developments since last Open Day Linux kernel migration

We are migrating from RedHat 6.9 (real-time kernel) to version 7.6 (standard kernel)

Developments since last Open Day Inter-Product Spread Strategies

On 16 September 2019, Eurex launched Inter-Product Spreads (IPS) for fixed income futures as a standardised futures product. See Eurex circular 067/2019.

- T7[®] release 7.1 requires the IPS legs to reside on the same partition
- T7[®] release 8.0 does not have this requirement
- FGBX and FBTP were re-allocated (Eurex circulars 029/2019 and 055/2019) on 10 June 2019

Product	Product Id	Leg 1	Partition 1	Leg 2	Partition 2
Schatz vs. Bund Spread	IPSL	FGBS	6	FGBL	2
Schatz vs. Bobl Spread	IPSM	FGBS	6	FGBM	4
Bobl vs. Bund Spread	IPMX	FGBM	4	FGBL	2
Bund vs. Buxl Spread	IPLX	FGBL	2	FGBX	6 🗲 2
BTP vs. Bund Spread	IPPL	FBTP	3 🗲 2	FGBL	2
OAT vs. Bund Spread	IPTL	FOAT	1	FGBL	2
BTP vs. OAT Spread	IPPT	FBTP	2	FOAT	1
BTP vs. BONO Spread	IPPO	FBTP	2	FBON	6
Schatz vs. BTS Spread	IPS2	FGBS	6	FBTS	6

Go-Live on 16 Sep 2019 on T7[®] current release 7.1 Candidates for go-live after introduction of T7[®] release 8.0

Inter-Product Spread Strategies - latency impact

Median round-trip times - Gateway to Gateway

The partition allocation of fixed-income futures will be reviewed after the introduction of T7[®] release 8.0.

"Multiplicity"

Latency jitter on parallel inbound paths had incentivized multiplicity (i.e. usage of multiple parallel paths) to reduce latency. This led to higher system load at busy times and thus created higher, less predictable latencies.

The introduction of a more deterministic network infrastructure (1), first-in-first-out (FIFO) processing of high-frequency gateways (2) and the recent migration to PS gateways as a single (low-latency) point of entry (3) led to a sizable reduction of multiplicity.

Recent competition in the ultra low latency space has raised the ratio of sent vs. executed IOCs again (see below chart). Note however that the recent increase (4) is not driven by multiplicity – we rather see reactions on many more market data events than before. More on this topic later.

Ratio of sent vs executed IOCs

Share your thoughts! #ITOpenDay19 @DeutscheBoerse

Launch of Passive Liquidity Protection (PLP) pilot phase

- Aggressive orders transactions, i.e. orders that are executable upon arrival in the matching engine, will be delayed before they are able to interact with the order book
- The deferral time is specific by product segment
- Pilot phase started on 3 June 2019
- No technical issues

Product Scope	Deferral Time
all German OSTK incl. weeklies	1 ms
all French OSTK incl. weeklies	3 ms

16 Topology changes for LF gateways

Topology changes for low frequency gateways Tunnelling

The PS gateway is the single low-latency order entry point for T7[®] Xetra and Eurex.

The LF gateways are usually slower than the PS gateways. However, the PS gateway queues requests during high loads. When this happens, requests sent to LF gateways may overtake PS gateway requests.

Solution: route all messages entered via LF gateway through the PS gateway.

Topology changes for low frequency gateways Tunnelling

Topology changes for low frequency gateways Tunnelling impact

Latency

- Co-location access via LF gateways ≈30µs faster than before
- Access via correct network side (A/B) more important than before
- Penalty for accessing "A" LF gateways via co-location "B" line (and vice-versa) is ≈50µs
- Penalty for accessing "A" partitions via "B" LF gateways in co-location (and vice-versa) is ≈50µs
- Matching priority is effectively assigned at PS gateway ingress
- Therefore no additional latency penalty for LF sessions compared to previous situation in colocation

ETI

- The RequestTime field in the ETI response will be filled with the PS gateway timestamp once tunnelling is activated
- LF gateway responses will contain the PS gateway timestamps

Market Data

- In EMDI and EOBI all fields referencing the matching engine in timestamp will be referencing the PS gateway in timestamp instead
- Exception: AggressorTime in the EOBI execution summary message

Topology changes for low frequency gateways Timeline

Preparation (network changes to move LF gateways closer to PS gateways)

- Eurex Dec 2019
- T7[®] Xetra Oct 2019

Activation

- Eurex Jan 2020
- T7[®] Xetra
 Feb 2020

21 High Precision Timestamp File

High Precision Timestamp File

Contains network times t_9d and t_3a for all trades

Use case: the signal generated by T7[®] leads to reactions by multiple trading participants. HPT allows to calculate reaction time differences with higher precision.

http://datashop.deutsche-boerse.com/High-precision-timestamps

High Precision Timestamp File

X-ray for network dynamics and ultra low latency reactions

Extended the HPT file service

- Launched in 2018:
- Since March 2019:
- Since August 2019:
- executions only all EOBI data for futures & cash all EOBI data for
- Eurex (incl. options)

https://www.mds.deutsche-boerse.com/mds-en/data-services/analytics/highprecision-timestamps

High Precision Timestamp File

Reaction time based on t_9d and t_3a (HPT)

Theoretical minimum (2736 ns)

*t_3a - t_9d for FDAX trades triggered by FESX

High Precision Timestamp File

Reaction time based on t_9d and t_3a (HPT)

Theoretical minimum (2736 ns)

*t_3a – t_9d for FDAX trades triggered by FESX

High Precision Timestamp File Reaction time for OESX orders

*t_3a – t_9d for OESX trades triggered by OESX orders

Simplified topology

Timestamps provided in T7 API (in real time) in dark blue (t_3n: taken by network card, other: application level)

 \bigotimes Cisco 3548X switches operating in cut-through mode.

Network dynamics Ethernet switching paradigms

Store and Forward

- Store the complete frame in memory
- Compute frame check sequence
- Decide where to forward to
- Forward

- Slow compared to cut-through
- Forwarding latency has more jitter than cut-through
- Drops any bad frames

Cut-Through (used in T7[®] co-location)

- Forward as soon as destination MAC is known (in theory)
- Actually reads a few more bytes (required to check ACLs for example)
- Only stores frame if egress port is currently blocked
- Faster than store-and-forward, less jitter
- Forwards bad frames (bad FCS, runts, etc.)
- In our case, extra burden of "rubbish disposal" put on gateways
- See T7[®] Network Access Guide for usage guidelines

Speculative triggering

- React immediately on market data packets by submitting first of N messages. Sometimes this message has no order book impact. Financially disincentived by changes in the Excessive System Usage (ESU) fee.
- 2. Followed-up by at least one more message in the very same Ethernet frame. The first message has the side effect of reserving priority in the network.

Speculative triggering

Speculative triggering

- 1. The most recent increase is because of similar method now applied in options.
- 2. Changes to ESU fees for option products under review

Ethernet switching paradigms

- The T7[®] co-location network switches operate in cut-through mode
- This will not change at least until end of 2020
- None of the two paradigms store-and-forward or cut-through are ideal
- Each paradigm incentivizes unorthodox behaviour to gain or reserve priority on the network
- We plugged the obvious technical loopholes and monitor for unexpected behaviour.

Market data

Port fairness

- Jitter from one packet to the next ≈15-20ns
- Some ports show a static offset ≈7-8ns (leftmost graph)
- The static offset is not caused by cable length differences
- The offset appears to depend on the multicast group subscription lists of a) the port under consideration and b) other ports on the same switch
- Analysis of this effect still ongoing
- Try different market-data cross-connects if those differences are relevant

t_9d to t_9a latency (ns) for FESX

Market data Port fairness

Comparison of t_9a vs t_9a for different market data lines relative to each other

Port to port latencies for FESX Market Data Switch 1 Switch 2 Switch 3 Monitoring Port Monitoring Port

37 T7® Time Synchronisation White Rabbit

T7[®] Time Synchronisation White Rabbit

- White Rabbit time service went live in Q3 2018 as pilot project
- Fully supported alternative to PTP since April 2019

White Rabbit 2019-08-05

Normal Operation – Sync error in timestamping devices is less than +/- 1ns

White Rabbit 2019-08-05

- Planned work on GPS receiver on a Saturday
- GPS service was restored by 11:00 (yellow bar)
- Root cause known and solution is underway

Thank you for your attention.

Contact

Sebastian Neusüß Andreas Lohr E-mail monitoring@deutsche-boerse.com Phone +49-(0) 69-2 11-1 86 86

e-boerse.com

26 September 2019

Disclaimer

Deutsche Börse AG opens up international capital markets for its customers. Its product and service portfolio covers the entire process chain – from pre-IPO services and the admission of securities, through securities and derivatives trading through the settlement of transactions and the provision of market information to the development and operation of electronic trading, clearing and settlement systems. With its process-oriented business model, Deutsche Börse increases the efficiency of capital markets. Committed employees are the key factor for innovation and further growth: without them, Deutsche Börse Group would not have developed into one of the most modern exchange organisations in the world. More than 5,000 employees work for the Group – a dynamic, motivated and international team.

T7[®] timestamps

Timestamps provided in T7 API (in real time) in dark blue (t_3n: taken by network card, other: application level) Network timestamps taken using taps and timestamping switches (Metamako)

Timestamps possibly taken by participants shown in grey